DeepSeek-R1 Windows微调实施手册

版本:1.1 | 适用系统:Windows 10/11 + WSL2 | 测试硬件:NVIDIA RTX 3090/4090


一、环境准备阶段

1.1 系统要求

组件最低要求推荐配置
操作系统Windows 10 21H2Windows 11 23H2
WSL版本WSL2WSL2 with GPU Passthrough
NVIDIA驱动535.xx545.xx+
磁盘空间150GB(系统盘)500GB NVMe SSD

1.2 WSL2环境部署

powershellCopy Code
# 以管理员身份运行PowerShell wsl --install -d Ubuntu-22.04 wsl --set-version Ubuntu-22.04 2 wsl --shutdown # 安装NVIDIA驱动for WSL2 winget install Nvidia.CUDA --version 12.2

1.3 CUDA环境配置

bashCopy Code
# 在WSL终端执行 sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub sudo apt update && sudo apt install -y cuda-toolkit-12-2 echo 'export PATH=/usr/local/cuda-12.2/bin:$PATH' >> ~/.bashrc source ~/.bashrc

二、依赖安装

2.1 Python环境

bashCopy Code
conda create -n deepseek python=3.10 -y conda activate deepseek pip install torch==2.1.0+cu121 torchvision==0.16.0+cu121 --extra-index-url https://download.pytorch.org/whl/cu121

2.2 核心库安装

bashCopy Code
pip install \ transformers==4.35.2 \ accelerate==0.24.1 \ datasets==2.15.0 \ peft==0.6.0 \ bitsandbytes==0.41.3.post2 \ tensorboard==2.14.0

2.3 FlashAttention优化

bashCopy Code
git clone https://github.com/Dao-AILab/flash-attention cd flash-attention && MAX_JOBS=4 python setup.py install

三、数据准备

3.1 数据集格式转换

将您的JSON数据转换为Hugging Face数据集格式:

pythonCopy Code
from datasets import Dataset, Features, Value features = Features({ "instruction": Value("string"), "input": Value("string"), "output": Value("string") }) dataset = Dataset.from_json("your_data.jsonl", features=features) dataset.save_to_disk("formatted_data")

3.2 数据预处理

pythonCopy Code
from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-r1-7b") tokenizer.pad_token = tokenizer.eos_token def preprocess(examples): texts = [f"Instruction: {ins}\nInput: {inp}\nOutput: {out}" for ins, inp, out in zip(examples["instruction"], examples["input"], examples["output"])] return tokenizer( texts, max_length=1024, truncation=True, padding="max_length", return_tensors="pt" ) dataset = dataset.map(preprocess, batched=True, batch_size=1000)

四、微调执行

4.1 LoRA配置

pythonCopy Code
from peft import LoraConfig lora_config = LoraConfig( r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" )

4.2 训练参数

pythonCopy Code
from transformers import TrainingArguments training_args = TrainingArguments( output_dir="./deepseek-r1-finetuned", per_device_train_batch_size=4, gradient_accumulation_steps=8, learning_rate=2e-5, num_train_epochs=3, fp16=True, logging_steps=50, save_steps=500, evaluation_strategy="no", optim="adamw_torch_fused", report_to="tensorboard" )

4.3 启动训练

pythonCopy Code
from transformers import Trainer, DataCollatorForLanguageModeling trainer = Trainer( model=model, args=training_args, train_dataset=dataset, data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False), peft_config=lora_config ) trainer.train()

五、验证与推理

5.1 加载微调模型

pythonCopy Code
from peft import PeftModel model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-r1-7b") model = PeftModel.from_pretrained(model, "./deepseek-r1-finetuned/checkpoint-1500")

5.2 测试推理

pythonCopy Code
input_text = "Instruction: 生成党建办绩效考核报告..." inputs = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate( inputs.input_ids, max_length=1024, temperature=0.7, top_p=0.9, do_sample=True ) print(tokenizer.decode(outputs, skip_special_tokens=True))

六、性能调优建议

6.1 显存优化策略

技术手段配置示例显存节省量
Gradient Checkpointingmodel.gradient_checkpointing_enable()30-40%
8-bit量化load_in_8bit=True50%
4-bit量化bnb_4bit_quant_type="nf4"70%

6.2 多GPU配置

bashCopy Code
# 启动分布式训练 accelerate launch --num_processes=2 --mixed_precision=fp16 train.py

七、常见问题排查

7.1 CUDA内存不足

pythonCopy Code
# 在TrainingArguments中添加: gradient_checkpointing=True, gradient_accumulation_steps=16

7.2 依赖冲突解决

bashCopy Code
# 创建隔离环境 python -m venv deepseek-env source deepseek-env/bin/activate pip install --force-reinstall torch==2.1.0+cu121

7.3 训练速度慢

bashCopy Code
# 启用CUDA内核优化 export PYTORCH_CUDA_ALLOC_CONF="backend:cudaMallocAsync" export NVIDIA_TF32_OVERRIDE=1 # 启用TF32加速

附:完整目录结构

textCopy Code
deepseek-finetune/ ├── data/ │ ├── raw/ # 原始数据 │ └── processed/ # 预处理后的数据集 ├── scripts/ │ ├── train.py # 训练主程序 │ └── inference.py # 推理脚本 ├── outputs/ # 模型检查点 └── logs/ # TensorBoard日志

:建议在WSL中通过\\wsl.localhost\Ubuntu-22.04\home\<user>\deepseek-finetune访问项目目录

如需原生Windows方案,请参考NVIDIA Windows ML指南

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论
小程序二维码

微信小程序

微信扫一扫体验

立即
投稿
公众号二维码

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部