DeepSeek-R1 Windows微调实施手册
版本:1.1 | 适用系统:Windows 10/11 + WSL2 | 测试硬件:NVIDIA RTX 3090/4090
一、环境准备阶段
1.1 系统要求
操作系统 | Windows 10 21H2 | Windows 11 23H2 |
WSL版本 | WSL2 | WSL2 with GPU Passthrough |
NVIDIA驱动 | 535.xx | 545.xx+ |
磁盘空间 | 150GB(系统盘) | 500GB NVMe SSD |
1.2 WSL2环境部署
powershellCopy Code# 以管理员身份运行PowerShell wsl --install -d Ubuntu-22.04 wsl --set-version Ubuntu-22.04 2 wsl --shutdown # 安装NVIDIA驱动for WSL2 winget install Nvidia.CUDA --version 12.2
1.3 CUDA环境配置
bashCopy Code# 在WSL终端执行
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
sudo apt update && sudo apt install -y cuda-toolkit-12-2
echo 'export PATH=/usr/local/cuda-12.2/bin:$PATH' >> ~/.bashrc
source ~/.bashrc
二、依赖安装
2.1 Python环境
bashCopy Codeconda create -n deepseek python=3.10 -y conda activate deepseek pip install torch==2.1.0+cu121 torchvision==0.16.0+cu121 --extra-index-url https://download.pytorch.org/whl/cu121
2.2 核心库安装
bashCopy Codepip install \ transformers==4.35.2 \ accelerate==0.24.1 \ datasets==2.15.0 \ peft==0.6.0 \ bitsandbytes==0.41.3.post2 \ tensorboard==2.14.0
2.3 FlashAttention优化
bashCopy Codegit clone https://github.com/Dao-AILab/flash-attention
cd flash-attention && MAX_JOBS=4 python setup.py install
三、数据准备
3.1 数据集格式转换
将您的JSON数据转换为Hugging Face数据集格式:
pythonCopy Codefrom datasets import Dataset, Features, Value
features = Features({
"instruction": Value("string"),
"input": Value("string"),
"output": Value("string")
})
dataset = Dataset.from_json("your_data.jsonl", features=features)
dataset.save_to_disk("formatted_data")
3.2 数据预处理
pythonCopy Codefrom transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-r1-7b")
tokenizer.pad_token = tokenizer.eos_token
def preprocess(examples):
texts = [f"Instruction: {ins}\nInput: {inp}\nOutput: {out}"
for ins, inp, out in zip(examples["instruction"], examples["input"], examples["output"])]
return tokenizer(
texts,
max_length=1024,
truncation=True,
padding="max_length",
return_tensors="pt"
)
dataset = dataset.map(preprocess, batched=True, batch_size=1000)
四、微调执行
4.1 LoRA配置
pythonCopy Codefrom peft import LoraConfig
lora_config = LoraConfig(
r=32,
lora_alpha=64,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
4.2 训练参数
pythonCopy Codefrom transformers import TrainingArguments
training_args = TrainingArguments(
output_dir="./deepseek-r1-finetuned",
per_device_train_batch_size=4,
gradient_accumulation_steps=8,
learning_rate=2e-5,
num_train_epochs=3,
fp16=True,
logging_steps=50,
save_steps=500,
evaluation_strategy="no",
optim="adamw_torch_fused",
report_to="tensorboard"
)
4.3 启动训练
pythonCopy Codefrom transformers import Trainer, DataCollatorForLanguageModeling
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
peft_config=lora_config
)
trainer.train()
五、验证与推理
5.1 加载微调模型
pythonCopy Codefrom peft import PeftModel
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-r1-7b")
model = PeftModel.from_pretrained(model, "./deepseek-r1-finetuned/checkpoint-1500")
5.2 测试推理
pythonCopy Codeinput_text = "Instruction: 生成党建办绩效考核报告..."
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(
inputs.input_ids,
max_length=1024,
temperature=0.7,
top_p=0.9,
do_sample=True
)
print(tokenizer.decode(outputs, skip_special_tokens=True))
六、性能调优建议
6.1 显存优化策略
Gradient Checkpointing | model.gradient_checkpointing_enable() | 30-40% |
8-bit量化 | load_in_8bit=True | 50% |
4-bit量化 | bnb_4bit_quant_type="nf4" | 70% |
6.2 多GPU配置
bashCopy Code# 启动分布式训练
accelerate launch --num_processes=2 --mixed_precision=fp16 train.py
七、常见问题排查
7.1 CUDA内存不足
pythonCopy Code# 在TrainingArguments中添加:
gradient_checkpointing=True,
gradient_accumulation_steps=16
7.2 依赖冲突解决
bashCopy Code# 创建隔离环境
python -m venv deepseek-env
source deepseek-env/bin/activate
pip install --force-reinstall torch==2.1.0+cu121
7.3 训练速度慢
bashCopy Code# 启用CUDA内核优化
export PYTORCH_CUDA_ALLOC_CONF="backend:cudaMallocAsync"
export NVIDIA_TF32_OVERRIDE=1 # 启用TF32加速
附:完整目录结构
textCopy Codedeepseek-finetune/ ├── data/ │ ├── raw/ # 原始数据 │ └── processed/ # 预处理后的数据集 ├── scripts/ │ ├── train.py # 训练主程序 │ └── inference.py # 推理脚本 ├── outputs/ # 模型检查点 └── logs/ # TensorBoard日志
注:建议在WSL中通过
\\wsl.localhost\Ubuntu-22.04\home\<user>\deepseek-finetune
访问项目目录
如需原生Windows方案,请参考NVIDIA Windows ML指南
发表评论 取消回复